38 research outputs found

    Efficient hole abstraction for highly selective oxidative coupling of methane by Au-sputtered TiO2 photocatalysts

    Get PDF
    Photocatalytic oxidative coupling of methane (OCM) produces C2 molecules that can be used as building blocks for synthesis of fuels and chemicals. However, the yield rate and the selectivity of C2 products are still moderate due to the stable nature of methane molecules. Here we develop a Au nanocluster-loaded TiO2 photocatalyst by a sputtering approach, achieving a high methane conversion rate of 1.1 mmol h−1, C2 selectivity of ~90% and apparent quantum efficiency of 10.3 ± 0.6%. The high C2/C2+ yield rate is on the same order of magnitude as the benchmark thermal catalysts in OCM processes operated at high temperature (>680 °C). Au nanoparticles are shown to prolong TiO2 photoelectron lifetimes by a factor of 66 for O2 reduction, together with Au acting as a hole acceptor and catalytic centre to promote methane adsorption, C–H activation and C–C coupling. This work underscores the importance of multifunctional co-catalysts and mechanistic understanding to improve photocatalytic OCM

    Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries

    Get PDF
    The search for batteries beyond Li-ion that offer better performance, reliability, safety, and/or affordability has led researchers to explore a diverse array of candidates. The advantages of Zn-ion batteries reside in zinc’s relatively low reactivity, raising the prospect of a rechargeable battery with a simple aqueous electrolyte and a cheaper, safer option to the organic electrolytes that must be paired with reactive lithium. However, water still reacts with the zinc in corrosion reactions. These consume zinc, lowering the battery’s capacity, and generate gas that accumulates in the sealed cell. We diagnose the contribution of corrosion to performance decay in zinc batteries and reveal the critical role of gas accumulation in deactivating large sections of electrode, which cripples cell performance. Fortunately, electrodes can be reactivated by removal of the gas, demonstrating the importance of designing future cells that either prevent gas formation or facilitate its safe release

    Achieving ultra‐high rate planar and dendrite‐free zinc electroplating for aqueous zinc battery anodes

    Get PDF
    Despite being one of the most promising candidates for grid-level energy storage, practical aqueous zinc batteries are limited by dendrite formation, which leads to significantly compromised safety and cycling performance. In this study, by using single-crystal Zn-metal anodes, reversible electrodeposition of planar Zn with a high capacity of 8 mAh cm−2 can be achieved at an unprecedentedly high current density of 200 mA cm−2. This dendrite-free electrode is well maintained even after prolonged cycling (>1200 cycles at 50 mA cm−2). Such excellent electrochemical performance is due to single-crystal Zn suppressing the major sources of defect generation during electroplating and heavily favoring planar deposition morphologies. As so few defect sites form, including those that would normally be found along grain boundaries or to accommodate lattice mismatch, there is little opportunity for dendritic structures to nucleate, even under extreme plating rates. This scarcity of defects is in part due to perfect atomic-stitching between merging Zn islands, ensuring no defective shallow-angle grain boundaries are formed and thus removing a significant source of non-planar Zn nucleation. It is demonstrated that an ideal high-rate Zn anode should offer perfect lattice matching as this facilitates planar epitaxial Zn growth and minimizes the formation of any defective regions

    An Improved Threshold-Sensitive Stable Election Routing Energy Protocol for Heterogeneous Wireless Sensor Networks

    No full text
    In the Threshold-Sensitive Stable Election Protocol, sensors are randomly deployed in the region without considering the balanced energy consumption of nodes. If a node that has been selected as a cluster head is located far away from the base station, it will affect the efficiency of the network due to its early death. This paper proposes an improved energy efficient routing protocol named Improved Threshold-Sensitive Stable Election protocol (ITSEP) for heterogeneous wireless sensor networks. Firstly, we use a node state transformation mechanism to control the number of cluster heads in high-density node areas. Secondly, the proposed protocol improves the threshold formula by considering the distance from the node to the base station, the number of neighbor nodes, its residual energy, and the average distance between nodes. In addition, an optimal route with minimum energy consumption for cluster heads has been selected throughout data transmission. Simulation results show that this algorithm has achieved a longer lifetime than the stable election protocol algorithm, modified stable election protocol algorithm, and threshold-sensitive stable election protocol algorithm for the heterogeneous wireless sensor network

    Investigation on the electrochemical activation process of Li1.20Ni0.32Co0.004Mn0.476O2

    Get PDF
    AbstractThe lithium-rich layered oxides are one of the most attractive cathode materials for lithium-ion batteries. Here, two types of Li1.20Ni0.32Co0.004Mn0.476O2 were synthesized using Li2CO3 and LiOH as lithium sources. An electrochemical activation process occurs in Li1.2Ni0.32Co0.004Mn0.476O2 prepared from Li2CO3 (LLO-1), while no obvious activation in Li1.2Ni0.32Co0.004Mn0.476O2 prepared from LiOH (LLO-2) is observed. Via advanced scanning transmission electron microscopy (STEM), we found that Li2MnO3-like structure is rich in the surface region of LLO-2. The study provides a direct explanation for the electrochemical activation of lithium-rich materials. The sample with more LiMO2-like phase at the surface region shows a better cycling performance. It is likely that more LiMO2-like phase at the surface region could stabilize the interface and improve the cycling performance of the Li-rich cathode materials

    Evaluation of Physical Characteristics of Typical Maize Seeds in a Cold Area of North China Based on Principal Component Analysis

    No full text
    The physical properties of maize seeds are closely related to food processing and production. To study and evaluate the characteristics of maize seeds, typical maize seeds in a cold region of North China were used as test varieties. A variety of agricultural material test benches were built to measure the maize seeds’ physical parameters, such as thousand-grain weight, moisture content, triaxial arithmetic mean particle size, coefficient of static friction, coefficient of rolling friction, angle of natural repose, coefficient of restitution, and stiffness coefficient. Principal component and cluster comprehensive analyses were used to simplify the characteristic parameter index used to judge the comprehensive score of maize seeds. The results showed that there were significant differences in the main physical characteristics parameters of the typical maize varieties in this cold area, and there were different degrees of correlation among the physical characteristics. Principal component analysis was used to extract the first three principal component factors, whose cumulative contribution rate was over 80%, representing most of the information of the original eight physical characteristic parameters, and had good representativeness and objectivity. According to the test results, the classification standard of the evaluation of the physical characteristics of 15 kinds of maize seeds were determined, and appropriate evaluations were conducted. The 15 kinds of maize seeds were clustered into four groups by cluster analysis, and the physical characteristics of each groups were different. This study provides a new idea for the evaluation and analysis of the physical properties of agricultural materials, and provides a new method for the screening and classification of food processing raw materials

    Apoptosis related genes mediated molecular subtypes depict the hallmarks of the tumor microenvironment and guide immunotherapy in bladder cancer

    No full text
    Abstract Apoptosis has been discovered as a mechanism of cell death. The purpose of this study is to identify the diagnostic signature factors related to bladder cancer (BLCA) through apoptosis related genes (ARGs). Clinicopathological parameters and transcriptomics data of 1,440 BLCA patients were obtained from 7 datasets (GSE13507, GSE31684, GSE32548, GSE32894, GSE48075, TCGA-BLCA, and IMvigor210). We first identified prognosis-related ARGs in BLCA and used them to construct two ARGs molecular subtypes by using consensus clustering algorithm. By using principal component analysis algorithms, a ARGscore was constructed to quantify the index of individualized patient. High ARGscore correlated with progressive malignancy and poor outcomes in BLCA patients. High ARGscore was associated with higher immune cell, higher estimate scores, higher stromal scores, higher immune scores, higher immune checkpoint, and lower tumor purity, which was consistent with the “immunity tidal model theory”. Preclinically, BLCA immunotherapy cohorts confirmed patients with low ARGscore demonstrated significant therapeutic advantages and clinical benefits. These findings contribute to our understanding of ARGs and immunotherapy in BLCA. The ARGscore is a potentially useful tool to predict the prognosis and immunotherapy in BLCA

    Tribological properties of fullerenes C60 and C70 microparticles

    Get PDF
    The frictional behaviors of fullerenes C60 and C70 were studied because they were speculated to be solid lubricants. For the sublimated pure C60 films on Si(001), a high friction coefficient (0.55–0.8) was observed under different loads and pin materials. For the C70 film, the friction coefficient showed a pin dependence, which changed from 0.5 with an Al2O3 pin to about 0.9 with a 440 stainless steel pin. The relatively high friction coefficients of C60 and C70 films were due to the tendency of the C60 and C70 particles to clump and compress into high shear strength layers rather than due to the impurities in the fullerenes. The benzene-solvated C60 · 4C6H6 and C70 · xC6H6 showed a lowered friction coefficient (0.25 for C60 · 4C6H6 and 0.3 for C 70 · xC6H6), which might result from the lowered shear strength of the hcp structure of C60 · 4C6H6 and C70 · xC6H6 molecular crystals in which the benzene molecules were intercalate

    Tribological properties of fullerenes C60 and C70 microparticles

    No full text
    The frictional behaviors of fullerenes C60 and C70 were studied because they were speculated to be solid lubricants. For the sublimated pure C60 films on Si(001), a high friction coefficient (0.55–0.8) was observed under different loads and pin materials. For the C70 film, the friction coefficient showed a pin dependence, which changed from 0.5 with an Al2O3 pin to about 0.9 with a 440 stainless steel pin. The relatively high friction coefficients of C60 and C70 films were due to the tendency of the C60 and C70 particles to clump and compress into high shear strength layers rather than due to the impurities in the fullerenes. The benzene-solvated C60 · 4C6H6 and C70 · xC6H6 showed a lowered friction coefficient (0.25 for C60 · 4C6H6 and 0.3 for C 70 · xC6H6), which might result from the lowered shear strength of the hcp structure of C60 · 4C6H6 and C70 · xC6H6 molecular crystals in which the benzene molecules were intercalate
    corecore